
ABSTRACT
A common vision of Augmented Reality (AR) is that of a person
immersed in a diverse collection of virtual information, superim-
posed on their view of the world around them. If such a vision is
to become reality, an ecosystem for AR must be created that satis-
fies at least these properties: multiple sources (or channels of in-
teractive information) must be able to be simultaneously displayed
and interacted with, channels must be isolated from each other
(for security and stability), channel authors must have the flexibil-
ity to design the content and interactivity of their channel, and the
application must fluidly integrate with the ever-growing cloud of
systems and services that define our digital lives.

In this paper, we present the design and implementation of the
Argon AR Web Browser and describe our vision of an AR appli-
cation environment that leverages the WWW ecosystem. We also
describe KARML, our extension to KML (the spatial markup
language for Google Earth and Maps), that supports the function-
ality required for mobile AR. We combine KARML with the full
range of standard web technologies to create a standards-based
web browser for mobile AR. KARML lets users develop 2D and
3D content using existing web technologies and facilitates easy
deployment from standard web servers. We highlight a number of
projects that have used Argon and point out the ways in which our
web-based architecture has made previously impractical AR con-
cepts possible.

Keywords: augmented reality, web-based architecture

Index Terms: H.5.1 [Information Interface and Presentation (e.g.,
HCI)]: Multimedia Information Systems— Artificial, augmented,
and virtual realities; H.5.4 [Information Interface and Presentation
(e.g., HCI)]: Hypertext/Hypermedia— Architectures.

1 INTRODUCTION

Since augmented reality (AR) was first demonstrated by Ivan
Sutherland in 1965 [20] the idea has captured researchers imagi-
nation. Spurred on by science fiction authors, the term conjures
dreams of people immersed in a hybrid physical/virtual world
where synthetic content of all kinds is blended with the physical
reality around them. AR research picked up in the late 1980s, with
various researchers focused on the enabling technologies (e.g.,
tracking software and hardware, display technology), exploring
different application domains (e.g., maintenance [5], medical [1],
military [23]), understanding human factors (e.g., user perception
of depth [12] or registration error [4]) and creating the authoring

tools necessary to support this research and exploration (e.g.,
DART [13], Studierstube [16], GoblinXNA [14]).

Each of these components is necessary if the dream of immer-
sive AR is to become a reality. However, success in each of these
areas is not sufficient; the user experience implied by the visions
of AR all share the idea that all AR content is presented in one
unified AR application environment, regardless of the source of
the content. Any AR experience, from the simple to to the com-
plex (e.g., games, training applications, social media, search re-
sults, advertising, and playful toys), should always be available
within one environment and should be able to be authored and
made available by independent developers with no coordination or
approval process.

The idea of a single AR environment, in which all AR content
is presented, has been proposed multiple times over the past two
decades (e.g., [10,15,16,17,19]), and is the (implicit) motivation
behind many of the so-called “AR Browsers” appearing in the
smartphone marketplace1. Unfortunately, none of the proposed
(research or commercial) systems comes close to achieving the
necessary functionality. Previous research systems have focused
on specific research questions (e.g., interaction techniques, col-

The Argon AR Web Browser and
Standards-based AR Application Environment

1Augmented Environments Lab, 2Interactive Media Technology Center, 3Research Network Operations Center
Georgia Institute of Technology, Atlanta, GA 30332

e-mail: {blair, ahill, hafez, mg129, bdavidson}@gatech.edu

Figure 1: A screen shot of the Argon browser showing three
simultaneous AR channels (presentation slides with embedded

video, live twitter search and marker tracking).

Blair MacIntyre1 Alex Hill1 Hafez Rouzati1 Maribeth Gandy2 Brian Davidson3

laboration, etc.) without worrying if the proposed architecture
could be deployed in a practical way. The various “AR Browsers”
focus on search and browsing of information snippets, but ignore
AR applications that cannot be represented as a collection of “in-
formation nuggets” (consider the breadth of AR applications pro-
posed and prototyped over the years; most could not be imple-
mented in one of these “Browsers”). Furthermore, none of these
systems addresses the practical issue that individual “AR applica-
tion” authors may want a high degree of control over the look,
feel and interaction of their content, even if it is displayed in par-
allel with other AR content. Finally, there are a range of practical
issues, from “cross-application” security to e-commerce and
offline data management to efficiency and scalability concerns
that a real system must address.

These concerns are not unique to AR, even though the style of
content presentation is unique; re-examining the history of our
existing 2D interactive computing systems helps to frame the
problem. When 2D and 3D graphical applications began to ap-
pear, each application was written to control the entire display.
Various SDKs and tools appeared to support application author-
ing, and researchers and practitioners experimented with a wide
range of interaction techniques and metaphors. Akin to the data-
centric AR system ideas, pluggable data-centric architectures for
2D content were created and championed (e.g., OpenDoc4), driven
by the appeal of composable “active objects” rather than mono-
lithic applications. In the end, the application/document model
and the desktop metaphor for 2D user interfaces emerged as the
dominant approach to sharing graphical displays between multiple
applications, and is the foundation on which all modern graphical
interfaces are based. The key concept behind the desktop meta-
phor is the “virtual device” abstraction, where each application is
authored as if it has access to the full capabilities of an abstract
collection of input and output devices. Users decide which pro-
grams are running, how they are arranged and how they interact
with them. While this model has its limitations, the reality is that
it successfully balances the needs of the application developer, the
user, and creators of the underlying systems: the model is simple,
and can result in robust, secure and practical systems.

When viewed in this historical context, what is needed for an
AR application environment is analogous to the 2D desktop and
windowing system. We are not suggesting literally moving 2D
windows into the world around us (as done in [6]), but rather the
related idea of an ecosystem in which independently created “AR
applications” co-exist without needing to know what other AR
content is also displayed. The granularity of the content elements
(e.g., the windows, menus, palettes, and dialog boxes of the 2D
desktop) will evolve over time, and may be different for different
applications. Just as early windowing systems, such as the X11
window system, provided core mechanisms but allowed different
policies and metaphors to be explored (i.e., through different
“Window Managers”), we need a flexible system based on a ro-
bust set of policy-agnostic mechanisms. Similarly, we must ensure
that the AR content authoring is at a reasonable level of abstrac-
tion, such that authors have sufficient control, but are not need-
lessly tied to a specific platform or hardware.

Over the years, as different ideas and designs for a single AR
environment were put forth, mobile hardware technology was not
mature enough to support such an environment, nor were there
any sufficiently powerful and flexible mobile system architectures
on which to base an implementation. As we will illustrate in this
paper, the combination of powerful mobile devices and the full
featured mobile web addresses these problems, and can serve as
the foundation for an AR application environment that moves us
one step closer to the dream of immersive AR. Over the past two
years, we have designed and built such an environment, including
a set of AR-specific web “application” abstractions, and an “AR
web browser” supporting them. Argon, the AR web browser, has
been freely available for iOS since February 14, 2011, and is start-
ing to be used by researchers and developers around the world.

The overall architecture, called KHARMA (KML/HTML Aug-
mented Reality Mobile Architecture), is based on standard web
technologies, whenever possible [8]. We have extended the se-
mantics of KML (the markup language used by Google Earth
(GE) and Google Maps) to support the requirements of AR. This
extension of KML is called KARML, and lets an author specify
where AR content lives in the world. AR applications (called
channels) live on standard web servers, and one or more of those
channels can be viewed simultaneously in Argon, as shown in
Figure 1. Each channel is independent, and can have its own user
interface and interactive content.

In this paper, we discuss the motivations behind the design of
the system, the specific research contributions of this work, some
of the more relevant details of Argon and KARML, and the im-
plementation of Argon on iOS. We present a variety of example
channels created by us, our collaborators and other developers,
and highlight how they leverage the unique attributes of our plat-
form.

1.1 Background: Deciding to Build on The Mobile Web
This project started in the fall of 2009, when we observed that the
development trajectory of modern smart phone hardware and
mobile web software would soon make the combination a suitable
foundation for a comprehensive AR application environment.

First, it was clear that mobile computing technology was matur-
ing rapidly, and would soon support the necessary system tech-
nologies (both hardware and software) for mobile AR. Powerful
mobile phones with GPS and orientation sensors had already
made a limited form of AR, handheld sensor-based video-see-
through augmented reality, practical for commercial developers
and accessible to millions of people. While early AR applications
for mobile devices still rely almost entirely on the built-in sensors
(i.e., GPS, compass, accelerometers and gyroscopes), newer com-
puter vision toolkits, such as Qualcomm’s AR SDK2, are enabling
developers to create a more powerful collection of applications
that accurately register graphics with the physical world.

Second, we believed that the modern mobile WWW architec-
ture would soon be mature enough to serve as the basis for an AR
application environment. What was once exemplified by impover-
ished WAP browsers3 had been replaced by mobile browsers with
features similar to their desktop counterparts. Mobile web render-
ers and the corresponding web standards included highly acceler-
ated Javascript and HTML/CSS engines, and will soon include
WebGL for arbitrary 3D content, the ability to safely run platform
independent native code, and access to hardware such as the cam-
era and the various sensors. Furthermore, a glance at a typical

1 www.wikitude.org, www.layer.com, www.acrossair.com
2 developer.qualcomm.com/dev/augmented-reality
3 www.wapforum.org
4 en.wikipedia.org/wiki/OpenDoc

computer display shows that even then, many of our tools lived in
the web ecosystem, from stores like Amazon to services like
Facebook to entire operating environments like Google’s Chro-
meOS. As more of what we do lives in the cloud, a cloud-based
ecosystem makes increasing sense.

Apple’s implementation of the WebKit 3D extensions in Mobile
Safari provided a key starting point for a web-based approach, by
allowing any interactive 2D web content to be rendered efficiently
in 3D. While 2D-billboards-in-3D is not the ideal solution for all
AR applications, the trajectory of web technologies is pointing in
the right direction (e.g., a combination of WebGL and native 3D
rendering will, in the near future, allow mobile web-based appli-
cations like Argon to support full 3D content as well).

Beyond the specifics of software, we do realize that the smart-
phone (by itself) is not the ideal vehicle for all AR applications,
because of its small screen and the need to hold it up to see
“through” it. However, when paired with a head-worn display
(which a number of display companies are working on), this limi-
tation will cease to be a problem. And the greatest advantage of
the mobile phone will continue to hold, it’s ubiquity: the best de-
vice is the one everyone already has in their pocket.

1.2 Goals
We had three main goals driving our development of Argon. First
and foremost, we wanted to create an AR application environment
that supports the vision of an immersive AR system: a “window
system” for AR. Our motivation to create such an environment is
driven by our desire to push AR technology forward; we firmly
believe that, unless AR technology is put in the hands of millions
of designers, engineers, artists and entrepreneurs around the
world, we will not fully understand where the “killer apps” might
lie, and what the true requirements of the technology are.

Our main goal was tempered by a second goal: to build on
existing mobile technology as much as possible. We did not want
to just leverage web technologies (for example, integrating a
JavaScript/HTML engine into an AR system); we wanted to inte-
grate with the web ecosystem as tightly as we could. As AR re-
searchers, we often forget that AR is just one technology among
the many that are needed to solve real problems. Some non-trivial
mobile AR applications will be complex, involving a spectrum of
2D and 3D content and interactions, and will need to be net-
worked and distributed. The enormous benefits in terms of author-
ing, deployment, access to web services and existing content that
are gained by integrating with the web outweigh the limitations,
for many possible AR applications.

Our final goal was to create an ecosystem that supports easy
and sophisticated authoring of applications; this again points to
the web as an ideal platform. KARML is based upon KML, along
with the full collection of contemporary Web 2.0 standards
(HTML, CSS, JavaScript, etc). While KARML extends the KML
language to better support handheld AR, we were careful to sup-
port traditional KML (most KML files will display in a predictable
way in Argon). Conversely, even complex combinations of HTML
and JavaScript can be used in Argon with minimal changes.
Taken together, experienced web developers can use tools and
techniques with which they are already very familiar (e.g.
HTML5, CSS, PHP, JavaScript, Google Earth, DreamWeaver,
Yahoo Pipes, etc.) to create their mobile AR applications, which
allows for existing web content to be repurposed with ease. Fur-
thermore, AR applications can be hosted on the same web servers

(since Argon uses the standard HTTP protocol), and even share
URLs with traditional web browsers (since Argon’s browser ID
string can be used by the server to identify requests from Argon
and respond appropriately). Together, these dramatically simplify
distribution and management of content.

2 CONTRIBUTIONS

In this paper, we present the Argon AR web browser, the KARML
markup language and their integration with the web. The main
contributions of this paper and project are summarized here.

Demonstration that the web is a viable mobile AR platform.
We do not claim Argon is, or will be, the ideal AR platform for all
mobile AR applications. However, Argon clearly demonstrates
that mobile web technologies are a viable basis for a wide range
of mobile AR applications. Argon currently supports sensor-based
AR and marker-based AR using 2D-billboards-in-3D content; it
will soon support much more complex computer vision-based
tracking and full 3D content.

The KARML specification. The variation of KML we have
defined is a living example of a markup language for AR content.
The specification is far more comprehensive than previous efforts.

The Argon multi-channel AR architecture. Argon supports
multiple independently authored, but simultaneously displayed,
channels of AR content. Each is fully scriptable, interactive and
can define its own 2D/3D interface. By layering multiple transpar-
ent WebKit instances on top of each other, each channel is sand-
boxed in its own JavaScript context (for security and robustness).
Argon provides channels with notification that their channel has
gained or lost focus (so they can change appearance or behaviour
when not in front), a shared location across channels (even when
one channel “moves” the browser to a synthetic location), and
access to GeoSpots (geo-located panoramic images that can be
included in channels and used in place of live video and GPS
location).

Demonstration that the web-centric approach is powerful.
Beyond the web being viable for AR, by embracing the web we
enable previously impractical or impossible AR applications to be
created and deployed. Simple applications can be deployed rap-
idly (in hours, not weeks or months). Complex applications, in-
volving cloud services, asynchronous agents, content filtering and
so on, are tractable. Beyond this, by leveraging the web we don’t
have to reinvent the wheel with respect to content creation: con-
tent elements can be authored in tools such as Google Earth or
Dreamweaver, and assembled as appropriate.

3 RELATED WORK

Since Vannevar Bush first described his hypothetical "memex"
device researchers have been seeking new ways to browse and
create connections between all types of information [3]. From the
beginning of AR research, systems were created that took data
with spatial meaning and attached it to the real-world objects and
locations. From merging ultrasound imagery with the patient [1]
to providing operating instructions for a printer visually registered
with the physical components [5], early AR systems demonstrated
the power of linking information to relevant spatial contexts.
Early outdoor AR systems expanded the range of scenarios to
include geospatial scale content; the Touring Machine [7] and
MARS [9] supported linking from 3D icons to the 2D web, and
TINMITH [15] explored the potential of in-situ AR editing.

Many of these early systems could be recreated on modern smart-
phones, and informed the requirements for our work.

Many authoring tools, of different forms, have been created.
Tools such as Studierstube combined software abstraction layers
for AR infrastructure and technologies into a framework usable
via code or GUI front-ends [16], with similar motivations to our
work but before the technical ecosystem was sufficiently evolved.
In contrast, DART added AR concepts to an existing high level
media authoring tool, Adobe Director [13]. A variety of projects,
like Goblin [14], focused on adding AR technology to game en-
gines. Other researchers focused on creating simple authoring
environments for a specific application domain (e.g., Amire, for
assembly tasks [24]). We expect that systems like Amire could be
implemented with Argon.

The ARToolkit [2], and the more recent FLARToolkit, provide
marker tracking in C++ and Adobe Flash, respectively. The appeal
of FLARToolkit is that, despite the limitations of being locked
inside the Flash engine, it make it trivial for developers to author
and distribute their applications, something that previously has
been a major hurdle. Argon takes the next step beyond systems
such as FLARToolkit, by supporting a wider variety of sophisti-
cated web applications. Others have attempted to create a lan-
guage for AR content and applications (e.g., Augmented Presenta-
tion and Interaction Language (APRIL) [11]), but without inte-
grating with the web, have had little success.

“Windows on the World” incorporated an existing 2D window
system within a 3D virtual world [6]. This system took X11 win-
dows from the desktop and placed them into the physical world,
but did not address authoring or real use. More relevant to this
project are the WorldBoard and RWWW projects. WorldBoard
envisioned a planetary augmented reality system that would pro-
vide innovative ways of associating information with places, with
ideas for scalability, global access and so forth [19]. The Real
World Wide Web (RWWW) project was our first attempt at creat-
ing a system like Argon [10], but the web was not mature enough
at the time to serve as a solid foundation for the work. More re-
cently, Schmalstieg et al have discussed leveraging the web eco-
system for AR [17] and they have presented some similar argu-
ments (in terms of availability, scalability, etc.) in support of this
general approach. They do not go as far as we do in proposing a
system that not only interoperates with the web, but uses web
technologies to actually realize rendering and interactivity ele-
ments. Nor do they build a complete prototype to test the idea.

In the last three years, a crop of commercially available “AR
browsers1” have appeared, aimed at outdoor information browsing
and retrieval. Each of these provides different degrees of open-
ness to end-user content, but nothing on the scale or capability of
even the early web. Junaio 2.0 introduces “indoor GPS” through
the concept of LLA (longitude, latitude, altitude) markers. Like
our GeoSpots, they provide precise location when GPS is inade-
quate. However, by encoding the location in physical form, rather
than using indirect references, they have limited flexibility.

KARML is not the first attempt to extend KML for AR. ARML4
extended KML with AR specific structures. These extensions were
more modest, and focused on adding markup extensions to sup-
port specific browser features, such as "wikitude:thumbnail" and
"ar:provider". The KARML extension is more comprehensive,

and focuses on extending existing KML features and semantics
while avoiding application specific additions wherever possible.

A tradition of abstraction and open tools define many technol-
ogy advances in the field of 3D, AR, and the web. It is clear that
technologies must be made accessible to be adopted. Components
that are typically hard to work with or understand must be made
easy. The Web3D standards of Virtual Reality Modeling Language
VRML 975 were an attempt to make 3D content ubiquitous on the
web. While later the Virtual-Reality Peripheral Network (VRPN)
provides a device-independent and network-transparent interface
to virtual-reality peripherals [21].

One feature of Argon is the ability to use panoramic images in
the background instead of live video. Commercial systems such as
Google StreetView as well as Microsoft's Photosynth and Bing
Maps support the creation and navigation of 3D panoramic scenes
augmented with geospatial data [18]. We have integrated this
concept into KARML and Argon to support the authoring of
mixed reality experiences that leverage the live channel data in
various ways both at the physical site and for remote viewing. We
have developed a web service that allows users to submit pano-
ramas to the system that can be utilized by channel authors via an
open API. Our plan is to eventually leverage the panorama service
for both display and tracking. Wagner et al developed a method
for the real-time creation and tracking of panoramic maps on mo-
bile phones and authoring of experiences that use them. They note
that this method can also be used in the creation of panoramic
images for offline browsing, for visual enhancements through
environment mapping, as well as standard tracking [22].

4 ARCHITECTURE

In this section, we discuss three main architectural components:
how Argon integrates with the web, the internal architecture of
Argon, and the KARML markup language. The intent of this dis-

Advanced
Channel Server

KARML

Cloud

AgentWeb App

Web Server

Script KARML

11

14

1213

HTTP

AJAX

AJ
AX

HTTP

H
TT

P

Argon JS APIScript KARML

Channel
ServerChannel

ServerChannel
Server

Database

Figure 2: Argon leverages multiple web architecture models.

4 www.openarml.org
5 www.web3D.org

cussion is to provide the essential details of what we did, both the
unique features and the key engineering decisions.

4.1 Argon and The Web Architecture
As we discussed in Section 1, a major design goal of this project
is to take advantage of web technology by integrating as tightly as
we can into the web. Figure 2 illustrates a spectrum of web pro-
gramming models that we have leveraged with Argon through this
integration. While these same models are commonly used for
mobile web development, recognizing their value for the creation
of AR applications represents a non-trivial shift in AR application
design to a methodology that fully leverages existing distributed
computing paradigms. Both the high-level architecture and Argon
were designed with the goal of enabling the entire spectrum of
web architectures. The example projects presented in later sec-
tions embrace one or more of the models depicted in Figure 2.

1) Static KARML/XML. This approach represents the sim-
plest model for serving content to users. Static files are hosted on
a web server and requested by a specific URI. All the content
elements are contained within the returned document and refer-
enced resources are resolved by the browser without requiring
explicit management by the content author, just as with traditional
HTML content.

2) KARML + AJAX + Client Side Processing. In this ap-
proach, the returned document will include a portion of the con-
tent or user interface elements used by the channel and a collec-
tion of scripts that use AJAX techniques to make requests to 3rd
party data sources. Using the Argon JavaScript API, content ele-
ments are instantiated with the returned JSON or XML data. The
client side scripts may also contain custom layout and user inter-
action code provided by a channel author.

3) Web Application With Dynamically Generated KARML.
Web applications dynamically generate content similar to that
discussed in 1 & 2. The web application keeps track of user ses-
sions and sends updates either through the standard KML Net-
workLink mechanism or by responding to AJAX requests.

4) Server Side Aggregation & Processing. An “advanced
channel server” communicates with 3rd party data sources and/or
other channel servers on the client’s behalf, in a effort to provide a
maximum level of server side processing. This architecture can
support aggregation based on the user’s preferences, even while
the user may not be running the browser application or have the
client channel loaded. This configuration acts as an intelligent
agent, and we envision that this offers an environment where ad-
ditional processing may take place such as image/content analysis
or computation of complex layout/filtering/clustering algorithms.
As mentioned in the introduction, the ability to perform these
computationally intensive tasks in the cloud allows authors to
create experiences that would otherwise require too much compu-
tation on the client device, too much data communication, or
would require the user to run the browser more than they other-
wise would want to.

4.2 Application Architecture
The current implementation of Argon has been built on the iOS
platform and is deployed on the iPhone4 and iPad2 devices run-
ning iOS version 4.2 and above. The application features a hybrid
architecture wherein portions of the application are implemented
in native code (in particular, Objective-C and C on iOS) and ex-

posed to content developers through custom bindings to the em-
bedded JavaScript interpreter.

Figure 3 illustrates the data flow between the components of the
application as well as illustrating the layering of the user interface,
WebKit view-layers, video layer, and panorama layer.

4.2.1 WebKit
At the time the project was started, iOS was the only mobile plat-
form with an efficient implementation of WebKit that featured
hardware-accelerated graphics support and support for CSS3 3D
transforms. At the time of writing, iOS remains the only mobile
platform that supports CSS3 3D transforms and this is a require-
ment for creating the HTML scene graph into which content ele-
ments can be placed and pushed out into the world.

Excluding panoramic content, all content for a given channel is
rendered in a single WebKit instance which consists of a view,
HTML renderer, and scripting context. Scripts associated with a
channel are sandboxed in a manner that mirrors tabs in a desktop
browser. Multi-channel functionality is realized by layering mul-
tiple overlapping transparent WebKit views/instances on top of
the video and panorama views and behind the application user
interface.

4.2.2 Private & Public JavaScript APIs
On the scripting side, functionality is divided between Private and
Public APIs. As the name suggests, the Private API is not meant
to be used by content developers.

The Private and Public JavaScript APIs act as connection points
between native code and interpreted code. The Public API also
provides a KML DOM whereby content authors may access and
modify KML nodes that are implemented as JavaScript object
prototypes. Authors use the KML DOM to dynamically instantiate
KML elements and add them to the scene.

The main function of the Private API is constructing and main-
taining the HTML DOM data structures for KML objects and
responding to messages from native code. An example of this
messaging interplay is the transmission and use of device orienta-
tion data. The application uses the iOS device APIs to obtain and
fuse the raw sensor data. The combined data is sent over the

Argon

App
Controller

Device/OS

CV Tracking
Engine

Sensor Fusion

Camera GPS/ Gyro /
Accelerometer Touch Input

Video

Parser

Networking

Persistent
Store

Wifi / 3g

Panorama
Engine

WebKit Instance 1
...

Webkit Instance N

HTML
Renderer

Script Interpreter
Script Context

Argon Private
API

Argon Public
API

WebKit API

Native /
Scripting
Bridge

Video Layer
Pano Layer
WebKit Layer 1

...
WebKit Layer N

UI Layer

Figure 3: The internal architecture of Argon consists of multiple
WebKit instances that communicate via an interpreted bridge.

bridge using pre-determined message structures. In the case of
device orientation, the message consists of a transformation ma-
trix. The Private API uses this information to transform the scene
graph appropriately.

4.2.3 Native/Interpreted Bridge
Communication between native code and interpreted code is im-
plemented through a Native/Interpreted Bridge. The WebKit
Event Source API (part of the HTML5 specification) is used for
sending high frequency updates (such as orientation and marker
tracking) from native code to interpreted code. The Event Source
is a string/message based API designed for high frequency uni-
directional in-browser updates. Complementary methods and
functions exist in the Argon Private JavaScript API that respond to
the messages received from native code appropriately and/or no-
tify content authors that various events have occurred.

Method calls from interpreted to native code are achieved by
utilizing a URL interception scheme that leverages the fact that
the iOS URL loading system lets an application inspect a given
URL load request and decide whether to proceed with the load or
react to specially encoded URLs in some other fashion. In this
scenario, URLs of the form

kharma://Class.Method/arguments
describe a call to the Method of Class with the provided argu-
ments. When the application encounters a URL of this type it
sends a message to the appropriate class to call the desired method
with the specified arguments. Content authors do not call the
native classes directly. Instead, they call regular JavaScript meth-
ods exposed through the Argon Public JavaScript API.

4.3 KARML: KML AR MARKUP LANGUAGE

The primary purpose of the KARML markup is to act as a binding
between the presentation content and locations in the physical
world. Using KML was attractive to us for a number of reasons.
First, it is broadly used not only by Google Maps and Google
Earth but also as an import and export format by numerous Geo-
graphic Information Systems (GIS). Secondly, the Google Earth
application is already in some ways a demonstration of a truly
global Virtual Reality (VR) system. Finally, standard KML al-
ready supports the binding of HTML 2D and COLLADA 3D

presentation content to physical locations. Motivated by these
traits, we developed the KARML extension in an attempt to re-
conceive the existing markup in the context of augmented reality
use.

Standard KML already supports the inclusion of arbitrary
HTML content into the description element of geolocated features
called Placemarks. In what has become a widely used technique,
Placemarks generate geolocated labels and icons which, when
selected, reveal descriptive information balloons. The following
KML example markup demonstrates placing a single image in a
balloon, the result of which can be seen Figure 4a:

Figure 4b shows how this same markup is rendered in Argon,
where we attempt to render standard KML faithfully. Neither the
GE application nor KML provide a means to remove the framed
balloon decoration. The KARML extension adds a displayMode
enumerator that indicates balloon HTML content should be ren-
dered undecorated. Replacing line 1 in the above markup with the
following markup leverages this feature:

By default, feature balloons are oriented towards the viewer and
scaled relatively in depth. A limitation of standard KML is that
placemarks can only be given a geospatial translation using the
Point element. The KARML extension adds a new Balloon ele-
ment modeled after the existing KML Model element to add con-
trol for the location, orientation and scaling of balloon content.
The KARML orientationMode and scaleMode elements let the
user toggle billboarding and relative scaling modes respectively.
Adding the following markup in place of or in addition to the

Figure 4: Examples of placing HTML code in standard feature balloons in a) GE and b) the Argon browser. The Balloon element is modeled
after the c) GE Model element and d) allows accurate position, orientation and scale in Argon. The e) Overlay element positions content rela-

tive to the display and the f) Tracker relative to typical AR markers. Users can override the global position of the browser g) through GeoSpots.

Point element positions the same HTML content at a fixed
location, orientation and scale:

In the Argon browser, each pixel of HTML content equates to 1
centimeter in the real world. In Google Earth, we use a template
COLLADA model (Figure 4c) to help position content in the real
world. Figure 4d illustrates how the above markup appears in the
Argon browser. Another limitation of standard KML is that all
latitudes and longitudes are absolute references to degree coordi-
nates. Any practical AR application is likely to benefit from hav-
ing both hierarchical frames of reference and alternate units of
measurement. The KARML extension adds a locationMode which
enumerates “fixed” and “relative” modes. Replacing the Balloon
element in the markup above with the following markup positions
the HTML content relative to another KML feature:

In the above markup, the Location element positions the balloon
6.0 meters north of a KML feature in the same document named
“otherPlacemark”. This fragment reference could instead point to
content in another KML file currently loaded by the Argon
browser. Argon supports several built in references including
“#user” (the default) and “#display”. Positioning content relative
to the display is functionally equivalent to the following markup
which uses the KML ScreenOverlay element to position arbitrary
HTML content on the display screen (Figure 4e):

It is also our goal to include other sources of position information
such as fiducial markers, Natural Feature Tracking (NFT) and
peripheral devices through libraries such as VRPN. An upcoming
release of Argon will allow using the following markup in place
of the Balloon element to position the same HTML content on
typical AR markers (Figure 4f):

Because Argon adds HTML content to each WebView dynami-
cally, the normal document initialization often does not work as
expected. The following markup demonstrates how to assign an

initialization function by adding JavaScript into the description
content:

The above markup binds to a focusChanged event in order to call
into the Argon Public API, find its associated KML object and set
its visibility to the channel focus state. This has the effect of mak-
ing the feature invisible when the channel is out of focus. In con-
trast to how it is implemented in the Google Earth application, all
KARML content contained within a single Argon channel shares
the same HTML DOM and CSS/JavaScript context.

4.4 GeoSpots
The GPS sensors currently in use by mobile devices are heavily
filtered and frequently only accurate to within 10 meters. This low
accuracy means that objects depicted on the phone in front of the
user can easily be actually behind them, effectively limiting the
range within which those augmentations can be delivered. The
Argon browser lets users manually override the reported tracking
of the device by physically aligning themselves at pre-surveyed
locations nearby called GeoSpots. The KML standard and Google
Earth application use the Camera and LookAt elements to estab-
lish viewing locations in the virtual world. In KARML and the
Argon browser, we re-appropriate the KML standard by denoting
any features that have a Camera element as GeoSpots. In addition
to improving tracking accuracy, GeoSpots allow Argon to report
an improved accuracy range to the channel so that content authors
can respond in kind. Beyond simply manipulating the range of
objects within view, increased accuracy may also motivate
changes in visual representation (i.e. from labels/icons to more
detailed content).

When available, we also go one step further and let the user
replace the video at GeoSpot locations with a panoramic image
that changes with the orientation of the device (Figure 4g).
Although the orientation sensor continues to determine the back-
ground viewed within, the relationship between that background
and augmentations in the browser remains registered and stable. If
the panoramas are an accurate representation of the GeoSpot
location, this technique effectively eliminates any error in orienta-
tion accuracy. The use of panoramic backdrops not only increases
the in situ options for viewing AR content but also greatly ex-
pands the potential audience for that content.

5 ILLUSTRATIVE EXAMPLES

A number of applications developed by ourselves, groups within
Georgia Tech and outside groups have resulted in a rich set of
examples that illustrate of the viability of Argon as an AR devel-
opment platform. In this section we describe several of these pro-
jects and highlight how each leverages the unique attributes that
Argon’s web-centric models have to offer.

5.1 Server-less AR Mashups
This example demonstrates how the default Argon rendering of
standard KML lets users create geospatial AR mashups from serv-

ices like Yahoo Pipes. Yahoo Pipes lets users create composite
webservices in a drag-and-drop interface and retrieve those results
as a map, JSON or KML. This allows anyone to create mashups
of web content and deliver them to an Argon browser without
hosting or writing any individual markup. Any Yahoo Pipe can be
called by entering its URL into the Argon address bar along with
parameters indicating it should return the results as KML (Figure
5a). The results returned by Yahoo create a new channel that ren-
ders placemarks as icons that can be expanded into balloons and
brought to fill the HUD through a series of clicks.

5.2 Webservice-based Searches
Four example channels demonstrate how webservice-based AR
searches can be implemented in Argon in as little as fifty lines of
HTML and JavaScript code. Like the other three similar searches,
the Twitter search channel places an input box in an overlay and
uses AJAX techniques to call the Twitter webservice and return
JSON data (Figure 5b). The resulting code is almost identical to
similar code executed in desktop browsers except that the JavaS-
cript uses the Argon Public API to dynamically create placemarks.
These searches also illustrate how channels can register for appli-
cation events and change their state when focus shifts from one
channel to another. When running multiple active channels, a
single channel remains in focus at any one time. Tapping on con-
tent in an out-of-focus channel changes focus (analogous to the
desktop). The search examples register for focusChanged events
in JavaScript in order to hide their respective search box and
minimize placemarks to labels and icons when out of focus. Each
search channel has an overlay image icon along the left of the
screen to facilitate switching focus when no content is visible.

5.3 Rapid Server-based AR Development
The AR Greeting Card application (Figure 5c) was developed in
about 16 man-hours over the weekend prior to the February 14th
debut of Argon in the iTunes store. It consists of a single MySQL
table and two PHP scripts. The webpage script presents a form,
populates the table with a unique user ID plus desired greeting
messages and sends an e-mail to the recipient with a link to a
second script. This second PHP script, instead of returning
HTML, sets the content type to KML and returns KARML spe-
cific to the passed in ID parameter. When Argon is installed on the

iPhone or iPad, clicking on a link that uses the kharma scheme
launches Argon and loads the KML generated by the URL. In this
example, the recipient can click on images positioned relative to
themselves to reveal a sequence of up to five messages.

5.4 Region Monitoring and GeoSpot Tracking Override
This example illustrates the use of KML region monitoring and
GeoSpots to manage the presentational aspects of AR content. The
Clough Undergraduate Learning Center is a new building under
construction on the Georgia Tech campus. Regions attached to
KML placemarks generate regionChanged events when a
boundary-crossing event occurs. When inside a region surround-
ing the construction site, a billboarded placemark over the site
instructs the user that they can view a pre-visualization of the new
building from one of two nearby GeoSpots (Figure 5d).

Bringing up the Argon map displays nearby GeoSpots along
with a detail that includes a textual description and an image of
exactly where to stand. By “going to” a GeoSpot, the user over-
rides the GPS location for all active channels, automatically gen-
erating a new locationChanged event in each and modifying the
associated location accuracy. When horizontal accuracy drops to
within a threshold, the billboarded message is replaced with a
rendering of the new building (created by members of the Georgia
Tech Imagine Lab in the School of Architecture) from the Geo-
Spot location. Clicking on different parts of the building brings up
detail renderings. The detail renderings and their associated inter-
action were developed in an HTML browser by re-appropriating
existing online content and then pasted as a whole into separate
KML placemark descriptions. Given the inaccuracy of magnetic
compasses, there is often mis-registration between the rendering
and surrounding buildings. When the user switches to a panoramic
background at the GeoSpot, an orientationChanged event is gen-
erated, the heading accuracy drops below a threshold and the ren-
dering of the building changes to one that is cropped to better
represent its relationship to the surroundings.

5.5 Rapid AR Development Leveraging Existing Tools
Several projects illustrate how HTML, CSS, JavaScript and PHP
skill sets can be leveraged to create AR content in Argon. The
22ndFloor Observation Deck demo was created by Engauge Inter-
active Atlanta (Figure 6a) by re-using existing material in a re-

Figure 5. Examples illustrating a) server-less AR mashups using Yahoo Pipes, b) webservice-based dynamic creation of content with channel
focus management, c) rapid development of server-based AR content and d) using regions and GeoSpots to manage tracking inaccuracy.

ported man-hour investment of about 8 hours. The main applica-
tion development, including reading of a JSON database, CSS
styling and associated image galleries was done primarily in a
desktop browser environment. Of over 400 lines of markup, only
about forty lines are KML (a KML ScreenOverlay for application
code plus image galleries and a KML PhotoOverlay for the Geo-
Spot) and 10 lines are specific calls to the Argon Public API to
create placemarks and automatically move to the GeoSpot. The
panorama was created by using the Photosynth application on the
iPhone 4 and uploading it to a conversion utility on our website.

A four-student senior CS design project created an Argon-based
game, Dotman’s Revenge (Figure 6b), over the course of a semes-
ter that features multiple maps, leaderboards and fully realized
game-play. The game characters consisted of 2D billboarded im-
ages of white pellets and a yellow protagonist. The application
logic for the game and PHP-driven scoreboard was developed
primarily in a desktop browser environment. Of over 1200 lines of
PHP and HTML markup, less than 100 are KML and less than 200
lines of JavaScript were specific to the dynamic creation and dele-
tion of placemark objects.

5.6 Blending of 2D Interfaces and AR Content
Several projects illustrate how projects based primarily on 2D
content can incorporate AR aspects using Argon. The Oakland
Experience (Figure 6c) is the continuation of an ongoing project
based on the narratives of residents at the historic Oakland Ceme-
tery in Atlanta. The application is primarily a linear tour of grave
sites at which different audio voiceovers can be selected. The
JavaScript and HTML used by the Digital Media (DM) students
developing the project was not a significant departure from creat-
ing the application in a mobile browser (Argon did provide sound
functionality not available at that time in Mobile Safari). The
immediate benefit of using Argon was that the students could
easily incorporate panoramic backgrounds they photographed and
stitched at each grave location on the tour to provide an engross-
ing experience for offline users. Recently, the students have begun
adding AR features to the tour including visual representations of
ghosts at the various grave sites.

The multi-user ARboretum application lets users plow, plant
and sell crops (Figure 6d). It was developed during a single se-

mester by a DM student with no prior 3D, AR or server-based
experience. The majority of the application consists of client-side
application logic and HUD content. Logic that updates and que-
ries user state happens after each UI action using a single table
MySQL database and AJAX technique.

Another application, Poring AR, was developed during a 6-
week class taught by one of our colleagues while at Alto Univer-
sity in Finland (Figure 6e). The application, about maintaining the
health of virtual creatures called Poring, consists of rich HUD-
based interactions and primarily uses AR concepts to manage the
location of the Poring in the game-space. Our colleague remarked
that this was likely the most fully realized AR application he had
witnessed from students in such a short timespan.

5.7 Client-Server Content and Layout Management
Argon facilitates applications that use a combination of client and
server-based interactivity and filtering of data. In collaboration
with the Georgia Tech Research Network Operations Center
(RNOC), the Virtual Tour Guide (VTG) aggregates social media
content such as Tweets, Flickr images, YouTube videos through a
proxy server into a personalized experience based on a priori so-
cial media affiliations (i.e. Facebook “likes”) (Figure 6f). The
VTG application uses a server-side geospatial database and cur-
rent user position to fill 8 bins of orientation space around the user
with prioritized content. The application uses regular server poll-
ing and the KML NetworkLink Updates scheme to dynamically
create, delete and modify placemarks around the user. This polling
scheme is combined with user-initiated keyword filtering through
the client interface (i.e. “contacts”, “sports”).

In an effort to create a single application experience, the VTG
application hides the standard Argon user interface and manages
activities such as moving to GeoSpots using Argon Public API
calls. The application also does its own display management of
placemark balloons. To avoid the overlapping of placemark labels,
client-side CSS and JavaScript dynamically manage the apparent
position of labels with leader-lines to their actual position. A pri-
ority assigned to each placemark delivered from the server is used
in a heuristic that dynamically moves the four highest ranked
labels towards the four corners of the screen.

Figure 6: Examples including a) the re-appropriation of existing web content by Engauge Interactive, b) the Dotman’s Revenge game by CS de-
sign students, c) the Oakland Experience at Oakland Cemetery, d) ARboretum and e) Poring AR by students from Alto University. The Virtual Tour

Guide application combines server and client side content filtering with dynamic placement of balloon labels to avoid overlap.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated that web technologies present
a viable and powerful solution for creating mobile augmented
reality applications using existing web standards. We described
the software architecture of the Argon AR web browser and how
our implementation leverages the existing WWW ecosystem to
provide an application environment for AR that allows for multi-
ple channels to be viewed simultaneously, bringing us one step
closer to the vision of immersive AR. We described our extensions
to KML in the form of KARML and provided details and exam-
ples of how we have re-appropriated KML for AR applications.
We described a number of past and current projects and high-
lighted the salient aspects of each project with respect to both
Argon and the vision of an AR application environment.

In the coming months, we plan to further develop Argon to add
new features including full 3D model rendering, support for other
markup languages (e.g., GML), natural feature tracking, protocols
for inter-channel communication, space management and layout
behaviors and abstractions, greater support for use of tracking data
across independent channels without prior coordination, the abil-
ity to capture and upload images and video, manual control of
view orientation and pinch-to-zoom capabilities, expanded client
API, online authoring tools, and support for desktop & other mo-
bile platforms.

ACKNOWLEDGEMENTS

We would like to acknowledge all the people who have contrib-
uted to this project, especially the many students at Georgia Tech
who have used the browser during the year leading up to its re-
lease. We would like to thank Jay Bolter, Matt Sanders, Russ
Clark, Jeff Evans, Elizabeth Mynatt and Mark Billinghurst for
supporting this project in a myriad of ways, most especially put-
ting their own classes and projects on the line by relying on this
vision of a web-based AR environment. This project has been
primarily supported by the Alcatel-Lucent University Innovations
Program, but also by Motorola, Turner Broadcasting, and the
Georgia Tech GVU Center and Institute for People and Technol-
ogy.

REFERENCES

[1]	

 Michael Bajura, Henry Fuchs and Ryutarou Ohbuchi, Merging vir-
tual objects with the real world: seeing ultrasound imagery within
the patient, ACM SIGGRAPH Computer Graphics, v.26 n.2,
p.203-210, July 1992.

[2]	

 M. Billinghurst and A. Cockburn, Eds. ACM International Confer-
ence Proceeding Series, vol. 104. Australian Computer Society,
Darlinghurst, Australia, 79-88.

[3]	

 V. Bush. As We May Think. Atlantic Monthly, (July 1945).
http://www.theatlantic.com/doc/19407/bush

[4]	

 E. Coelho, B. MacIntyre and S. Julier, Supporting Interaction in
Augmented Reality in the Presence of Uncertain Spatial Knowledge,
18th Annual ACM Symposium on User Interface Software and Tech-
nology, October 23-26, 2005, Seattle, Washington.

[5]	

 S. Feiner, B. Macintyre and D. Seligmann, Knowledge-based aug-
mented reality, Communications of the ACM, v.36 n.7, p.53-62, July
1993.

[6]	

 S. Feiner, B. MacIntyre, M. Haupt and E. Solomon, Windows on the
world: 2D windows for 3D augmented reality, Proc. UIST '93 (ACM
Symp. on User Interface Software and Technology), Atlanta, GA,
November 3-5, 1993, p.145-155.

[7]	

 S. Feiner, B. MacIntyre, T. Hollerer and A. Webster, A touring ma-

chine: Prototyping 3d mobile augmented reality systems for explor-
ing the urban environment, Proceedings of the First International
Symposium on Wearable Computers (ISWC), Cambridge, Massachu-
setts, USA (1997) p.74–81.

[8]	

 A. Hill, B. MacIntyre, M. Gandy, B. Davidson and H. Rouzati,
KHARMA: An Open KML/HTML Architecture for Mobile Aug-
mented Reality Applications, 9th IEEE International Symposium on
Mixed an Augmented Reality, October 2010, p.233-234.

[9]	

 T. Hollerer, S. Feiner, T. Terauchi, G. Rashid and D. Hallaway, Ex-
ploring mars: developing indoor and outdoor user interfaces to a
mobile augmented reality system, Computers & Graphics 23 (1999)
p.779–785.

[10]	

 R. Kooper and B. MacIntyre, Browsing the Real-World Wide Web:
Maintaining Awareness of Virtual Information in an AR Information
Space, International Journal of Human-Computer Interaction, Vol-
ume 16, Issue 3 December 2003 , p.425-446.

[11]	

 F. Ledermann and D. Schmalstieg, APRIL: A high-level framework
for creating augmented reality presentations. In Proceedings of the
2005 IEEE Virtual Reality Conference, Bonn, Germany, IEEE Com-
puter Society (2005).

[12]	

 M. A. Livingston, J. E. Swan II, J. L. Gabbard, T. H. Hoellerer, D.
Hix, S. J. Julier, Y. Baillot, and D. Brown. 2003, Resolving Multiple
Occluded Layers in Augmented Reality, Proceedings of the 2nd
IEEE/ACM International Symposium on Mixed and Augmented
Reality (ISMAR '03), IEEE Computer Society, Washington, DC,
USA.

[13]	

 B. MacIntyre , M. Gandy, J. Bolter, S. Dow and B. Hannigan,
DART: The Designer's Augmented Reality Toolkit, Proceedings of
2nd IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, October 07-10, 2003.

[14]	

 O. Oda, Ohan and S. Feiner. Rolling and shooting: two augmented
reality games, Proceedings of the 28th of the international confer-
ence extended abstracts on Human factors in computing systems,
2010, Atlanta, Georgia, USA

[15]	

 Piekarski, W, 3D Modelling with the Tinmith Mobile Outdoor Aug-
mented Reality System, IEEE Computer Graphics and Applications,
Vol. 26, No. 1, p.14-17, 2006.

[16]	

 D. Schmalstieg, A. Fuhrmann, G. Hesina, G., Z. Szalav´ari, L.M.
Encarna¸c˜ao, M. Gervautz and W. Purgathofer, The studierstube
augmented reality project, Presence: Teleoperators and Virtual Envi-
ronments 11 (2002) p.33–54.

[17] D. Schmalstieg, T. Langlotz and M. Billnghurst, Augmented Reality
2.0, Virtual Realities, 2011, p.13-37.

[18]	

 N. Snavely , S. M. Seitz and R. Szeliski, Photo tourism: exploring
photo collections in 3D, ACM Transactions on Graphics (TOG), v.25
n.3, July 2006.

[19]	

 J. C. Spohrer, Information in places, Systems Journal, 38 (4),
p.602-628, 1999.

[20] I. Sutherland, The ultimate display, Proceedings of the IFIP Con-
gress, p.506-508. 1965.

[21]	

 R. M. Taylor, II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano and
A. T. Helser, VRPN: a device-independent, network-transparent VR
peripheral system, Proceedings of the ACM symposium on Virtual
reality software and technology, November 15-17, 2001, Baniff,
Alberta, Canada.

[22]	

 D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond and D. Schmal-
stieg, Real-Time Detection and Tracking for Augmented Reality on
Mobile Phones, IEEE Transactions on Visualization and Computer
Graphics, v.16, n.3, p.355-368 , 2010-May/June.

[23]	

 S. J. Yohan, S. Julier, Y. Baillot, BARS: Battlefield Augmented Real-
ity System, Proceedings of the NATO Symposium on Information
Processing Techniques for Military Systems, p.9-11, 2000.

[24]	

 J. Zauner, M. Haller, and A. Brandl, Authoring of a mixed reality
assembly instructor for hierarchical structures, Proceedings of IS-
MAR 2003, IEEE, p.237–246, Tokyo, Japan, October 7–10 2003.

