
ABSTRACT
A common vision of Augmented Reality  (AR) is that of a person 
immersed in a diverse collection of virtual information, superim-
posed on their view of the world around them. If such a vision is 
to  become reality, an ecosystem for AR must  be created that satis-
fies at  least these properties: multiple sources (or channels of in-
teractive information) must be able to be simultaneously displayed 
and interacted with, channels must be isolated from each other 
(for security and stability), channel  authors must  have the flexibil-
ity to  design the content and interactivity of their channel, and the 
application must fluidly integrate with the ever-growing cloud of 
systems and services that define our digital lives.

In this paper, we present the design and implementation of the 
Argon AR Web Browser and describe our vision of an AR appli-
cation environment that leverages the WWW ecosystem. We also 
describe KARML, our extension  to KML (the spatial markup 
language for Google Earth and Maps), that supports the function-
ality required for mobile AR. We combine KARML with the full 
range of standard web technologies to create a standards-based 
web browser for mobile AR. KARML lets users develop 2D and 
3D content using existing web technologies and facilitates easy 
deployment from standard web servers. We highlight  a number of 
projects that have used Argon and point out the ways in which our 
web-based architecture has made previously impractical AR con-
cepts possible.
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HCI)]: Multimedia Information Systems— Artificial, augmented, 
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(e.g., HCI)]: Hypertext/Hypermedia— Architectures.

1 INTRODUCTION

Since augmented reality (AR) was first demonstrated by Ivan 
Sutherland in 1965 [20]  the idea has captured researchers imagi-
nation. Spurred on by science fiction authors, the term conjures 
dreams of people immersed in a hybrid physical/virtual world 
where synthetic content of all  kinds is blended with the physical 
reality around them. AR research picked up in the late 1980s, with 
various researchers focused on the enabling technologies (e.g., 
tracking software and hardware, display technology), exploring 
different application domains (e.g., maintenance [5], medical [1], 
military [23]), understanding human factors (e.g., user perception 
of depth [12] or registration error [4]) and creating the authoring 

tools necessary to  support this research and exploration (e.g., 
DART [13], Studierstube [16], GoblinXNA [14]). 

Each of these components is necessary if the dream of immer-
sive AR is to  become a reality.  However, success in  each  of these 
areas is not sufficient; the user experience implied by the visions 
of AR all share the idea that all  AR content is presented in one 
unified  AR application environment, regardless of the source of 
the content.  Any AR experience, from the simple to to the com-
plex (e.g., games, training applications, social media, search re-
sults, advertising, and playful toys), should always be available 
within  one environment  and should be able to be authored and 
made available by independent developers with no coordination or 
approval process. 

The idea of a single AR environment, in which all AR content 
is presented, has been proposed multiple times over the past two 
decades (e.g., [10,15,16,17,19]), and is the (implicit) motivation 
behind many of the so-called “AR Browsers” appearing in the 
smartphone marketplace1. Unfortunately, none of the proposed 
(research or commercial) systems comes close to achieving the 
necessary functionality. Previous research systems have focused 
on  specific research questions (e.g., interaction techniques, col-
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laboration, etc.) without worrying if the proposed architecture 
could be deployed in a practical way.  The various “AR Browsers” 
focus on search and browsing of information snippets, but  ignore 
AR applications that  cannot be represented as a collection of “in-
formation nuggets” (consider the breadth of AR applications pro-
posed and prototyped over the years; most could not be imple-
mented in one of these “Browsers”).  Furthermore, none of these 
systems addresses the practical  issue that individual  “AR applica-
tion”  authors may want a high degree of control over the look, 
feel and interaction of their content, even if it  is displayed in par-
allel with  other AR content.  Finally, there are a range of practical 
issues, from “cross-application”  security to e-commerce and 
offline data management to efficiency and scalability concerns 
that a real system must address.

These concerns are not unique to AR, even though the style of 
content presentation is unique; re-examining the history of our 
existing 2D interactive computing systems helps to frame the 
problem. When 2D and 3D graphical applications began to ap-
pear, each application was written to control  the entire display.  
Various SDKs and  tools appeared  to support  application author-
ing, and researchers and practitioners experimented with a wide 
range of interaction techniques and metaphors. Akin to the data-
centric AR system ideas, pluggable data-centric architectures for 
2D content were created and championed (e.g., OpenDoc4), driven 
by  the appeal of composable “active objects”  rather than mono-
lithic applications. In the end, the application/document model 
and the desktop metaphor for 2D user interfaces emerged as the 
dominant approach to sharing graphical displays between multiple 
applications, and is the foundation on which all modern graphical 
interfaces are based.  The key concept  behind the desktop meta-
phor is the “virtual device”  abstraction, where each application is 
authored as if it has access to the full capabilities of an abstract 
collection of input and output devices.  Users decide which pro-
grams are running, how they are arranged and how they interact 
with  them. While this model  has its limitations, the reality is that 
it  successfully balances the needs of the application developer, the 
user, and creators of the underlying systems: the model is simple, 
and can result in robust, secure and practical systems.

When viewed in this historical context, what is needed for an 
AR application environment is analogous to the 2D desktop and 
windowing system.  We are not suggesting literally moving 2D 
windows into the world  around us (as done in [6]), but rather the 
related idea of an ecosystem in which independently  created “AR 
applications” co-exist  without needing to know what other AR 
content is also displayed.  The granularity of the content elements 
(e.g., the windows, menus, palettes, and dialog boxes of the 2D 
desktop) will evolve over time, and may be different  for different 
applications.  Just as early windowing systems, such as the X11 
window system, provided core mechanisms but allowed different 
policies and metaphors to be explored (i.e., through different 
“Window Managers”), we need a flexible system based on a ro-
bust  set of policy-agnostic mechanisms. Similarly, we must ensure 
that the AR content authoring is at a reasonable level of abstrac-
tion, such that authors have sufficient control, but  are not need-
lessly tied to a specific platform or hardware. 

Over the years, as different ideas and designs for a single AR 
environment were put forth, mobile hardware technology was not 
mature enough to support such an environment, nor were there 
any sufficiently  powerful  and flexible mobile system architectures 
on  which  to  base an implementation. As we will illustrate in this 
paper, the combination of powerful mobile devices and  the full 
featured mobile web addresses these problems, and can serve as 
the foundation for an AR application environment that  moves us 
one step closer to the dream of immersive AR. Over  the past two 
years, we have designed and built  such an environment, including 
a set of AR-specific web “application”  abstractions, and an “AR 
web browser”  supporting  them.  Argon, the AR web browser, has 
been freely available for iOS since February 14, 2011, and is start-
ing to be used by researchers and developers around the world.

The overall architecture, called  KHARMA (KML/HTML Aug-
mented Reality Mobile Architecture), is based on standard web 
technologies, whenever possible [8]. We have extended the se-
mantics of KML (the markup language used by Google Earth 
(GE) and Google Maps) to support the requirements of AR. This 
extension of KML is called KARML, and lets an author specify 
where AR content lives in  the world.  AR applications (called 
channels) live on standard  web servers, and one or more of those 
channels can be viewed simultaneously in Argon, as shown in 
Figure 1. Each channel is independent, and can have its own user 
interface and interactive content.   

In this paper, we discuss the motivations behind the design of 
the system, the specific research contributions of this work, some 
of the more relevant details of Argon and KARML, and the im-
plementation of Argon on iOS. We present a variety of example 
channels created by us, our collaborators and other developers, 
and highlight how they leverage the unique attributes of our plat-
form.  

1.1 Background: Deciding to Build on The Mobile Web
This project started  in the fall of 2009, when we observed that the 
development trajectory of modern smart phone hardware and  
mobile web software would soon make the combination a suitable 
foundation for a comprehensive AR application environment. 

First, it  was clear that mobile computing technology was matur-
ing rapidly, and would soon support the necessary system tech-
nologies (both hardware and software) for mobile AR. Powerful 
mobile phones with GPS and orientation sensors had already 
made a limited form of AR, handheld sensor-based video-see-
through augmented reality, practical for commercial developers 
and accessible to  millions of people. While early AR applications 
for mobile devices still rely almost entirely on the built-in sensors 
(i.e., GPS, compass, accelerometers and gyroscopes), newer com-
puter vision toolkits, such as Qualcomm’s AR SDK2, are enabling 
developers to create a more powerful collection of applications 
that accurately register graphics with the physical world.

Second, we believed that the modern mobile WWW architec-
ture would  soon be mature enough to serve as the basis for an AR 
application environment. What  was once exemplified  by impover-
ished WAP browsers3 had  been replaced by mobile browsers with 
features similar to their desktop counterparts. Mobile web render-
ers and the corresponding web standards included highly acceler-
ated Javascript and HTML/CSS engines, and will soon include 
WebGL for arbitrary 3D content, the ability to safely run platform 
independent native code, and access to hardware such as the cam-
era and the various sensors. Furthermore, a glance at a typical 
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computer display shows that even then, many of our tools lived in 
the web ecosystem, from stores like Amazon to  services like 
Facebook to entire operating environments like Google’s Chro-
meOS.  As more of what we do lives in the cloud, a cloud-based 
ecosystem makes increasing sense.

Apple’s implementation of the WebKit 3D extensions in Mobile 
Safari provided a key starting point for a web-based approach, by 
allowing any interactive 2D web content to be rendered efficiently 
in  3D. While 2D-billboards-in-3D is not the ideal solution for all 
AR applications, the trajectory of web technologies is pointing in 
the right  direction (e.g., a combination of WebGL and native 3D 
rendering will, in the near future, allow mobile web-based appli-
cations like Argon to support full 3D content as well). 

Beyond the specifics of software, we do realize that  the smart-
phone (by itself) is not the ideal vehicle for all AR applications, 
because of its small  screen and the need to hold it up to see 
“through”  it.  However, when paired with a head-worn display 
(which a number of display companies are working on), this limi-
tation will cease to be a problem. And the greatest advantage of 
the mobile phone will continue to hold, it’s ubiquity: the best de-
vice is the one everyone already has in their pocket. 

1.2 Goals
We had three main goals driving our development of Argon. First 
and foremost, we wanted to create an AR application environment 
that supports the vision of an immersive AR system: a “window 
system” for AR.  Our motivation to create such an environment is 
driven by our desire to push AR technology forward;  we firmly 
believe that, unless AR technology is put in the hands of millions 
of designers, engineers, artists and entrepreneurs around the 
world, we will  not fully understand where the “killer apps” might 
lie, and what the true requirements of the technology are.

Our main goal was tempered by a second goal:  to build on 
existing mobile technology as much as possible. We did not want 
to  just leverage web technologies (for example, integrating  a 
JavaScript/HTML engine into an AR system); we wanted to inte-
grate with the web ecosystem as tightly as we could. As AR re-
searchers, we often forget that AR is just one technology among 
the many that are needed to solve real  problems. Some non-trivial 
mobile AR applications will be complex, involving a spectrum of 
2D and 3D content and interactions, and will  need to be net-
worked and distributed. The enormous benefits in terms of author-
ing, deployment, access to web services and existing content that 
are gained by integrating with the web outweigh the limitations, 
for many possible AR applications.  

Our final goal was to create an ecosystem that  supports easy 
and sophisticated authoring of applications; this again points to 
the web as an ideal platform. KARML is based  upon KML, along 
with  the full  collection of contemporary Web 2.0 standards 
(HTML, CSS, JavaScript, etc). While KARML extends the KML 
language to better support  handheld AR, we were careful to sup-
port traditional KML (most KML files will display in a predictable 
way in Argon). Conversely, even complex combinations of HTML 
and JavaScript can be used in Argon with minimal changes.  
Taken together, experienced web developers can use tools and 
techniques with which  they are already very  familiar (e.g. 
HTML5, CSS, PHP, JavaScript, Google Earth, DreamWeaver, 
Yahoo Pipes, etc.) to create their mobile AR applications, which 
allows for existing web content to be repurposed with ease.  Fur-
thermore, AR applications can be hosted on the same web servers 

(since Argon uses the standard HTTP protocol), and even share 
URLs with traditional  web browsers  (since Argon’s browser ID 
string can be used by the server to identify requests from Argon 
and respond appropriately).  Together, these dramatically simplify 
distribution and management of content.

2 CONTRIBUTIONS

In this paper, we present the Argon AR web browser, the KARML 
markup language and their integration with the web.  The main 
contributions of this paper and project are summarized here. 

Demonstration that the web is a viable mobile AR platform. 
We do not  claim Argon is, or will be, the ideal AR platform for all 
mobile AR applications.  However, Argon clearly demonstrates 
that mobile web technologies are a viable basis for a wide range 
of mobile AR applications. Argon currently  supports sensor-based 
AR and marker-based AR using 2D-billboards-in-3D content; it 
will  soon support much more complex computer vision-based 
tracking and full 3D content.

The KARML specification. The variation of KML we have 
defined is a living example of a markup language for AR content. 
The specification is far more comprehensive than previous efforts. 

The Argon multi-channel AR architecture. Argon supports 
multiple independently authored, but simultaneously displayed, 
channels of AR content. Each is fully scriptable, interactive and 
can define its own 2D/3D interface. By layering multiple transpar-
ent WebKit instances on top of each other, each channel is sand-
boxed in its own JavaScript context (for security and robustness).   
Argon provides channels with notification that  their channel has 
gained or lost  focus (so  they can change appearance or behaviour 
when not in front), a shared location across channels (even when 
one channel “moves”  the browser to a synthetic location), and  
access to GeoSpots (geo-located panoramic images that can be 
included in  channels and used in place of live video and GPS 
location).

Demonstration that the web-centric approach is powerful. 
Beyond the web being viable for AR, by embracing the web we 
enable previously  impractical  or impossible AR applications to be 
created and deployed.  Simple applications can be deployed rap-
idly  (in hours, not weeks or months). Complex applications, in-
volving cloud services, asynchronous agents, content filtering and 
so  on, are tractable. Beyond this, by leveraging the web we don’t 
have to reinvent the wheel with respect to content creation: con-
tent elements can be authored in tools such as Google Earth or 
Dreamweaver, and assembled as appropriate.   

3 RELATED WORK

Since Vannevar Bush first described his hypothetical "memex" 
device researchers have been seeking  new ways to browse and 
create connections between all types of information [3]. From the 
beginning of AR research, systems were created that  took data 
with  spatial meaning and attached it  to  the real-world objects and 
locations. From merging ultrasound imagery with the patient [1] 
to  providing operating instructions for a printer visually  registered 
with  the physical components [5], early AR systems demonstrated 
the power of linking information to relevant spatial contexts.  
Early outdoor AR systems expanded the range of scenarios to  
include geospatial scale content;  the Touring Machine [7] and 
MARS [9] supported linking from 3D icons to the 2D web, and 
TINMITH [15] explored the potential of in-situ AR editing.  



Many of these early systems could be recreated on modern smart-
phones, and informed the requirements for our work.

Many authoring tools, of different forms, have been created. 
Tools such as Studierstube combined software abstraction layers 
for AR infrastructure and technologies into a framework usable 
via code or GUI front-ends [16], with similar motivations to our 
work but before the technical ecosystem was sufficiently evolved. 
In contrast, DART added AR concepts to an existing high level 
media authoring tool, Adobe Director [13]. A variety of projects, 
like Goblin [14], focused on adding AR technology to game en-
gines. Other researchers focused on creating simple authoring  
environments for a specific application domain (e.g., Amire, for 
assembly tasks [24]).  We expect that systems like Amire could be 
implemented with Argon. 

The ARToolkit [2], and the more recent FLARToolkit, provide 
marker tracking in C++ and Adobe Flash, respectively. The appeal 
of FLARToolkit is that, despite the limitations of being locked  
inside the Flash engine, it make it trivial  for developers to author 
and distribute their applications, something that previously has 
been a major hurdle. Argon takes the next step beyond systems 
such as FLARToolkit, by supporting a wider variety of sophisti-
cated web applications.  Others have attempted to create a lan-
guage for AR content and applications (e.g., Augmented  Presenta-
tion  and Interaction Language (APRIL) [11]), but without inte-
grating with the web, have had little success. 

“Windows on the World” incorporated an existing 2D window 
system within a 3D virtual world [6]. This system took X11 win-
dows from the desktop  and placed them into the physical world, 
but did not address authoring or real use. More relevant to this 
project are the WorldBoard  and RWWW projects. WorldBoard 
envisioned a planetary augmented reality system that would pro-
vide innovative ways of associating information with places, with 
ideas for scalability, global access and so forth [19]. The Real 
World Wide Web (RWWW) project  was our first  attempt at creat-
ing a system like Argon [10], but  the web was not mature enough 
at the time to serve as a solid foundation for the work. More re-
cently, Schmalstieg et al  have discussed leveraging the web eco-
system for AR [17] and they have presented some similar argu-
ments (in terms of availability, scalability, etc.) in support of this 
general approach. They do not go as far as we do  in  proposing  a 
system that not only interoperates with the web, but uses web 
technologies to actually realize rendering and interactivity ele-
ments.  Nor do they build a complete prototype to test the idea.

In the last three years, a crop of commercially  available “AR 
browsers1” have appeared, aimed at  outdoor information browsing 
and retrieval.  Each of these provides different degrees of open-
ness to end-user content, but nothing  on the scale or capability of 
even the early web.  Junaio 2.0  introduces “indoor GPS” through 
the concept of LLA (longitude, latitude, altitude) markers.  Like 
our GeoSpots, they provide precise location when GPS is inade-
quate.  However, by encoding the location in physical form, rather 
than using indirect references, they have limited flexibility.

KARML is not the first attempt to extend KML for AR. ARML4 
extended KML with AR specific structures. These extensions were 
more modest, and focused on adding markup extensions to  sup-
port specific browser features, such as "wikitude:thumbnail" and 
"ar:provider". The KARML extension is more comprehensive, 

and focuses on extending existing KML features and semantics 
while avoiding application specific additions wherever possible.

A tradition of abstraction and open tools define many technol-
ogy advances in the field of 3D, AR, and the web. It is clear that 
technologies must be made accessible to be adopted. Components 
that are typically hard to work with  or understand must be made 
easy. The Web3D standards of Virtual Reality Modeling Language 
VRML 975 were an attempt to  make 3D content ubiquitous on the 
web. While later the Virtual-Reality Peripheral Network (VRPN) 
provides a device-independent and  network-transparent  interface 
to virtual-reality peripherals [21]. 

One feature of Argon is the ability  to use panoramic images in 
the background instead of live video. Commercial systems such as 
Google StreetView as well as Microsoft's Photosynth and Bing 
Maps support the creation and navigation of 3D panoramic scenes 
augmented with geospatial data [18]. We have integrated this 
concept into KARML and Argon to support the authoring of 
mixed reality experiences that leverage the live channel data in 
various ways both  at  the physical  site and for remote viewing. We 
have developed a web service that allows users to submit  pano-
ramas to  the system that can be utilized by channel authors via an 
open API. Our plan is to eventually  leverage the panorama service 
for both display and tracking. Wagner et al developed a method 
for the real-time creation and tracking of panoramic maps on mo-
bile phones and authoring of experiences that use them. They note 
that this method can also be used in the creation of panoramic 
images for offline browsing, for visual enhancements through 
environment mapping, as well as standard tracking [22]. 

4 ARCHITECTURE

In this section, we discuss three main architectural components:  
how Argon integrates with the web, the internal architecture of 
Argon, and the KARML markup language. The intent of this dis-
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cussion  is to provide the essential details of what we did, both the 
unique features and the key engineering decisions.

4.1 Argon and The Web Architecture 
As we discussed in Section 1, a major design goal of this project 
is to take advantage of web technology by integrating as tightly  as 
we can into the web. Figure 2 illustrates a spectrum of web pro-
gramming models that we have leveraged  with Argon through this 
integration. While these same models are commonly used for 
mobile web development, recognizing their value for the creation 
of AR applications represents a non-trivial shift  in AR application 
design to a methodology that fully  leverages existing distributed 
computing paradigms. Both the high-level  architecture and Argon 
were designed with the goal of enabling  the entire spectrum of 
web architectures.  The example projects presented in later sec-
tions embrace one or more of the models depicted in Figure 2.

1) Static KARML/XML. This approach represents the sim-
plest model for serving content to users. Static files are hosted on 
a web server and requested by a specific URI. All the content  
elements are contained within  the returned document and refer-
enced resources are resolved by the browser without  requiring  
explicit management by the content author, just  as with traditional 
HTML content.

2) KARML + AJAX + Client Side Processing. In this ap-
proach, the returned document will include a portion of the con-
tent or user interface elements used by the channel  and a collec-
tion  of scripts that use AJAX techniques to make requests to 3rd 
party data sources. Using the Argon JavaScript API, content ele-
ments are instantiated with the returned JSON or XML data. The 
client side scripts may also contain custom layout and user inter-
action code provided by a channel author.

3) Web Application With Dynamically Generated KARML.
Web applications dynamically generate content similar to that  
discussed in 1  & 2. The web application keeps track of user ses-
sions and sends updates either through the standard KML Net-
workLink mechanism or by responding to AJAX requests.

4) Server Side Aggregation & Processing. An “advanced 
channel server”  communicates with 3rd party data sources and/or 
other channel servers on the client’s behalf, in  a effort to provide a 
maximum level of server side processing. This architecture can 
support  aggregation based on the user’s preferences, even while 
the user may not be running the browser application or have the 
client channel loaded. This configuration acts as an intelligent 
agent, and we envision that  this offers an environment where ad-
ditional processing may take place such as image/content analysis 
or computation of complex layout/filtering/clustering algorithms. 
As mentioned in the introduction, the ability to perform these 
computationally intensive tasks in the cloud allows authors to  
create experiences that would otherwise require too much compu-
tation on the client device, too much data communication, or 
would require the user to  run the browser more than they other-
wise would want to.

4.2 Application Architecture
The current implementation of Argon has been built on  the iOS 
platform and is deployed on the iPhone4 and iPad2 devices run-
ning  iOS version 4.2 and above. The application features a hybrid 
architecture wherein portions of the application are implemented 
in  native code (in particular, Objective-C and C on iOS) and ex-

posed to content  developers through custom bindings to the em-
bedded JavaScript interpreter. 

Figure 3 illustrates the data flow between the components of the 
application as well as illustrating the layering of the user interface, 
WebKit view-layers, video layer, and panorama layer.

4.2.1 WebKit
At the time the project was started, iOS was the only mobile plat-
form with an efficient implementation of WebKit that featured 
hardware-accelerated graphics support  and support for CSS3 3D 
transforms.  At the time of writing, iOS remains the only mobile 
platform that supports CSS3 3D transforms and this is a require-
ment for creating the HTML scene graph into  which  content ele-
ments can be placed and pushed out into the world.

Excluding panoramic content, all content for a given channel is 
rendered in a single WebKit instance which consists of a view, 
HTML renderer, and scripting context.  Scripts associated with a 
channel are sandboxed in a manner that mirrors tabs in a desktop 
browser.  Multi-channel functionality  is realized by layering mul-
tiple overlapping transparent WebKit views/instances on top of 
the video and panorama views and behind  the application user 
interface.

4.2.2 Private & Public JavaScript APIs
On the scripting side, functionality is divided between Private and 
Public APIs.  As the name suggests, the Private API is not  meant 
to be used by content developers.

The Private and Public JavaScript APIs act as connection points 
between native code and interpreted code.  The Public API also 
provides a KML DOM whereby content authors may access and 
modify KML nodes that are implemented as JavaScript object 
prototypes. Authors use the KML DOM to dynamically instantiate 
KML elements and add them to the scene.

The main function of the Private API is constructing and main-
taining the HTML DOM data structures for KML objects and  
responding to messages from native code. An example of this 
messaging interplay is the transmission and use of device orienta-
tion  data.  The application uses the iOS device APIs to obtain and 
fuse the raw sensor data.  The combined data is sent over the 
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bridge using pre-determined message structures. In the case of 
device orientation, the message consists of a transformation ma-
trix.  The Private API uses this information to transform the scene 
graph appropriately.

4.2.3 Native/Interpreted Bridge
Communication between native code and interpreted code is im-
plemented through a Native/Interpreted Bridge. The WebKit 
Event Source API (part of the HTML5 specification) is used for 
sending high frequency updates (such as orientation and  marker 
tracking) from native code to interpreted code. The Event  Source 
is a string/message based API designed for high frequency uni-
directional in-browser updates.  Complementary methods and 
functions exist in  the Argon Private JavaScript API that respond to 
the messages received from native code appropriately and/or no-
tify content authors that various events have occurred. 

Method calls from interpreted to native code are achieved by 
utilizing a URL interception scheme that leverages the fact that 
the iOS URL loading system lets an application inspect  a given 
URL load request and decide whether to proceed with the load or 
react to specially encoded URLs in some other fashion. In this 
scenario, URLs of the form 

kharma://Class.Method/arguments
describe a call to the Method  of Class  with  the provided argu-
ments. When the application encounters a URL of this type it 
sends a message to the appropriate class to call  the desired method 
with  the specified arguments.  Content authors do not call  the 
native classes directly. Instead, they call regular JavaScript  meth-
ods exposed through the Argon Public JavaScript API. 

4.3 KARML:  KML AR MARKUP LANGUAGE

The primary purpose of the KARML markup is to  act as a binding 
between the presentation content and locations in the physical 
world. Using KML was attractive to us for a number of reasons. 
First, it is broadly used not  only by Google Maps and Google 
Earth but also as an import  and export format by numerous Geo-
graphic Information Systems (GIS). Secondly, the Google Earth 
application is already in some ways a demonstration of a truly 
global Virtual Reality (VR) system. Finally, standard KML al-
ready supports the binding of HTML 2D and COLLADA 3D 

presentation content to physical locations. Motivated by these 
traits, we developed the KARML extension in an attempt to re-
conceive the existing markup in the context of augmented reality 
use.

Standard KML already supports the inclusion of arbitrary 
HTML content  into the description element of geolocated  features 
called Placemarks. In what has become a widely used technique, 
Placemarks generate geolocated labels and icons which, when  
selected, reveal  descriptive information balloons. The following 
KML example markup demonstrates placing a single image in a 
balloon, the result of which can be seen Figure 4a:

Figure 4b shows how this same markup is rendered in Argon, 
where we attempt to render standard KML faithfully. Neither the 
GE application nor KML provide a means to  remove the framed 
balloon decoration. The KARML extension adds a displayMode 
enumerator that indicates balloon HTML content should  be ren-
dered undecorated. Replacing line 1 in the above markup with the 
following markup leverages this feature:

By default, feature balloons are oriented towards the viewer and 
scaled relatively in depth. A limitation of standard KML is that 
placemarks can only be given a geospatial translation using the 
Point  element. The KARML extension adds a new Balloon ele-
ment modeled after the existing KML Model element to add con-
trol for the location, orientation and scaling of balloon content. 
The KARML orientationMode and scaleMode elements let the 
user toggle billboarding and relative scaling modes respectively. 
Adding  the following  markup in place of or in addition to  the 

Figure 4: Examples of placing HTML code in standard feature balloons in a) GE and b) the Argon browser. The Balloon element is modeled 
after the c) GE Model element and d) allows accurate position, orientation and scale in Argon. The e) Overlay element positions content rela-

tive to the display and the f) Tracker relative to typical AR markers. Users can override the global position of the browser g) through GeoSpots.



Point  element  positions the same HTML content at a fixed 
location, orientation and scale:

In the Argon browser, each pixel of HTML content  equates to  1 
centimeter in  the real world. In Google Earth, we use a template 
COLLADA model (Figure 4c) to  help position  content in  the real 
world. Figure 4d illustrates how the above markup appears in the 
Argon browser. Another limitation of standard KML is that all 
latitudes and longitudes are absolute references to  degree coordi-
nates. Any practical AR application is likely to  benefit from hav-
ing both hierarchical frames of reference and alternate units of 
measurement. The KARML extension adds a locationMode which 
enumerates “fixed” and “relative”  modes. Replacing the Balloon 
element in the markup above with the following markup positions 
the HTML content relative to another KML feature:

In the above markup, the Location element  positions the balloon 
6.0 meters north of a KML feature in the same document named 
“otherPlacemark”. This fragment reference could instead point  to 
content in another KML file currently loaded by the Argon 
browser. Argon supports several built in references including 
“#user” (the default) and  “#display”. Positioning content relative 
to  the display is functionally equivalent to the following markup 
which uses the KML ScreenOverlay element to position arbitrary 
HTML content on the display screen (Figure 4e):

It is also our goal to include other sources of position information 
such as fiducial  markers, Natural Feature Tracking (NFT) and  
peripheral devices through libraries such as VRPN. An upcoming 
release of Argon will allow using the following markup in place 
of the Balloon element to position the same HTML content  on 
typical AR markers (Figure 4f):

Because Argon adds HTML content to each WebView dynami-
cally, the normal document initialization often does not  work as 
expected. The following markup demonstrates how to assign an 

initialization function by adding JavaScript into the description 
content:

The above markup binds to a focusChanged  event in order to call 
into  the Argon Public API, find its associated KML object and set 
its visibility  to the channel focus state. This has the effect of mak-
ing the feature invisible when the channel is out of focus. In con-
trast to  how it is implemented in the Google Earth application, all 
KARML content contained within  a single Argon channel shares 
the same HTML DOM and CSS/JavaScript context.

4.4 GeoSpots
The GPS sensors currently in use by mobile devices are heavily 
filtered and frequently only accurate to within 10 meters. This low 
accuracy means that  objects depicted on the phone in front of the 
user can  easily be actually behind them, effectively limiting the 
range within which those augmentations can be delivered. The 
Argon browser lets users manually override the reported tracking 
of the device by physically aligning themselves at pre-surveyed 
locations nearby called GeoSpots. The KML standard and Google 
Earth application use the Camera and LookAt elements to estab-
lish  viewing locations in the virtual world. In KARML and the 
Argon browser, we re-appropriate the KML standard by denoting 
any features that  have a Camera element as GeoSpots. In addition 
to  improving tracking accuracy, GeoSpots allow Argon to report 
an improved accuracy range to the channel so that  content  authors 
can respond in kind. Beyond simply manipulating the range of 
objects within view, increased accuracy may also motivate 
changes in visual representation (i.e. from labels/icons to more 
detailed content).

When available, we also go one step further and let the user 
replace the video at GeoSpot locations with a panoramic image 
that changes with the orientation of the device (Figure 4g). 
Although the orientation sensor continues to determine the back-
ground viewed within, the relationship between that  background 
and augmentations in the browser remains registered and stable. If 
the panoramas are an accurate representation of the GeoSpot 
location, this technique effectively  eliminates any error in orienta-
tion  accuracy. The use of panoramic backdrops not only increases 
the in situ options for viewing AR content but also greatly ex-
pands the potential audience for that content.

5 ILLUSTRATIVE EXAMPLES

A number of applications developed by ourselves, groups within 
Georgia Tech and outside groups have resulted in a rich set of 
examples that illustrate of the viability  of Argon as an AR devel-
opment platform. In  this section we describe several of these pro-
jects and highlight how each leverages the unique attributes that 
Argon’s web-centric models have to offer.

5.1 Server-less AR Mashups
This example demonstrates how the default Argon rendering of 
standard KML lets users create geospatial AR mashups from serv-



ices like Yahoo Pipes. Yahoo Pipes lets users create composite 
webservices in a drag-and-drop interface and retrieve those results 
as a map, JSON or KML. This allows anyone to create mashups 
of web content  and deliver them to an Argon browser without 
hosting or writing any individual markup. Any Yahoo Pipe can be 
called by entering its URL into the Argon address bar along with 
parameters indicating it  should return the results as KML (Figure 
5a). The results returned by Yahoo create a new channel that ren-
ders placemarks as icons that can be expanded into balloons and 
brought to fill the HUD through a series of clicks.

5.2 Webservice-based Searches
Four example channels demonstrate how webservice-based AR 
searches can be implemented  in Argon in as little as fifty lines of 
HTML and JavaScript code. Like the other three similar searches, 
the Twitter search channel places an  input box in an overlay and 
uses AJAX techniques to  call the Twitter webservice and return 
JSON data (Figure 5b). The resulting code is almost identical to 
similar code executed in desktop browsers except that  the JavaS-
cript uses the Argon Public API to dynamically create placemarks. 
These searches also illustrate how channels can register for appli-
cation events and change their state when focus shifts from one 
channel to another. When running multiple active channels, a 
single channel remains in focus at any one time. Tapping on con-
tent in  an out-of-focus channel changes focus (analogous to the 
desktop). The search examples register for focusChanged events 
in  JavaScript in order to hide their respective search box and 
minimize placemarks to labels and icons when out of focus. Each 
search channel has an overlay image icon along the left of the 
screen to facilitate switching focus when no content is visible.

5.3 Rapid Server-based AR Development
The AR Greeting Card application (Figure 5c) was developed in 
about 16 man-hours over the weekend prior to the February 14th 
debut of Argon in the iTunes store. It consists of a single MySQL 
table and two PHP scripts. The webpage script presents a form, 
populates the table with a unique user ID plus desired greeting 
messages and sends an e-mail  to the recipient with a link to a 
second script. This second PHP script, instead of returning 
HTML, sets the content type to KML and returns KARML spe-
cific to the passed in ID parameter. When Argon is installed on the 

iPhone or iPad, clicking on a link that uses the kharma scheme 
launches Argon and loads the KML generated by the URL. In this 
example, the recipient can click  on images positioned relative to 
themselves to reveal a sequence of up to five messages.

5.4 Region Monitoring and GeoSpot Tracking Override
This example illustrates the use of KML region monitoring and 
GeoSpots to manage the presentational aspects of AR content. The 
Clough Undergraduate Learning Center is a new building under 
construction on the Georgia Tech campus. Regions attached to 
KML placemarks generate regionChanged  events when a 
boundary-crossing event occurs. When inside a region surround-
ing the construction site, a billboarded placemark over the site 
instructs the user that they can view a pre-visualization of the new 
building from one of two nearby GeoSpots (Figure 5d).

Bringing  up  the Argon map displays nearby GeoSpots along 
with  a detail that includes a textual description and an image of 
exactly where to stand. By “going to” a GeoSpot, the user over-
rides the GPS location for all  active channels, automatically  gen-
erating a new locationChanged event in each and modifying the 
associated location accuracy. When horizontal accuracy drops to 
within  a threshold, the billboarded message is replaced with a 
rendering of the new building (created by members of the Georgia 
Tech Imagine Lab in the School of Architecture) from the Geo-
Spot location. Clicking on different  parts of the building brings up 
detail renderings. The detail renderings and their associated inter-
action were developed in an HTML browser by re-appropriating 
existing online content and then pasted  as a whole into separate 
KML placemark descriptions. Given the inaccuracy of magnetic 
compasses, there is often mis-registration between the rendering 
and surrounding buildings. When the user switches to a panoramic 
background at the GeoSpot, an orientationChanged event  is gen-
erated, the heading accuracy drops below a threshold and the ren-
dering of the building changes to one that is cropped to better 
represent its relationship to the surroundings.

5.5 Rapid AR Development Leveraging Existing Tools
Several projects illustrate how HTML, CSS, JavaScript and PHP 
skill sets can be leveraged to create AR content in Argon. The 
22ndFloor Observation Deck demo was created by Engauge Inter-
active Atlanta (Figure 6a) by re-using existing material in a re-

Figure 5. Examples illustrating a) server-less AR mashups using Yahoo Pipes, b) webservice-based dynamic creation of content with channel 
focus management, c) rapid development of server-based AR content and d) using regions and GeoSpots to manage tracking inaccuracy.



ported man-hour investment of about 8 hours. The main applica-
tion  development, including reading of a JSON database, CSS 
styling and associated image galleries was done primarily in a 
desktop browser environment. Of over 400 lines of markup, only 
about forty lines are KML (a KML ScreenOverlay for application 
code plus image galleries and a KML PhotoOverlay for the Geo-
Spot) and  10 lines are specific calls to  the Argon Public API to 
create placemarks and automatically move to the GeoSpot. The 
panorama was created by using the Photosynth application on the 
iPhone 4 and uploading it to a conversion utility on our website.

A four-student senior CS design  project created an Argon-based 
game, Dotman’s Revenge (Figure 6b), over the course of a semes-
ter that  features multiple maps, leaderboards and fully realized 
game-play. The game characters consisted of 2D billboarded im-
ages of white pellets and a yellow protagonist. The application 
logic for the game and PHP-driven scoreboard was developed 
primarily in a desktop browser environment. Of over 1200 lines of 
PHP and HTML markup, less than 100 are KML and less than 200 
lines of JavaScript were specific to  the dynamic creation and dele-
tion of placemark objects.

5.6 Blending of 2D Interfaces and AR Content
Several projects illustrate how projects based primarily on 2D 
content can incorporate AR aspects using Argon. The Oakland 
Experience (Figure 6c) is the continuation of an  ongoing project 
based on the narratives of residents at the historic Oakland Ceme-
tery in Atlanta. The application is primarily a linear tour of grave 
sites at which different audio voiceovers can be selected. The 
JavaScript and HTML used by the Digital  Media (DM) students 
developing the project was not a significant departure from creat-
ing the application in a mobile browser (Argon did provide sound 
functionality not available at that time in Mobile Safari). The 
immediate benefit of using Argon was that  the students could  
easily incorporate panoramic backgrounds they photographed and 
stitched at each grave location on the tour to provide an engross-
ing experience for offline users. Recently, the students have begun 
adding AR features to the tour including visual representations of 
ghosts at the various grave sites.

The multi-user ARboretum application lets users plow, plant 
and sell crops (Figure 6d). It was developed during a single se-

mester by a DM student with no prior 3D, AR or server-based  
experience. The majority of the application consists of client-side 
application logic and HUD content. Logic that updates and que-
ries user state happens after each UI action using a single table 
MySQL database and AJAX technique.

Another application, Poring AR, was developed during a 6-
week class taught by one of our colleagues while at Alto Univer-
sity  in Finland (Figure 6e). The application, about  maintaining the 
health of virtual creatures called Poring, consists of rich HUD-
based interactions and primarily uses AR concepts to manage the 
location of the Poring in the game-space. Our colleague remarked 
that this was likely the most fully realized  AR application he had 
witnessed from students in such a short timespan.

5.7 Client-Server Content and Layout Management
Argon facilitates applications that use a combination of client and 
server-based interactivity  and filtering of data. In collaboration 
with  the Georgia Tech Research Network Operations Center 
(RNOC), the Virtual Tour Guide (VTG) aggregates social media 
content such as Tweets, Flickr images, YouTube videos through a 
proxy server into  a personalized experience based on a priori so-
cial media affiliations (i.e. Facebook “likes”) (Figure 6f). The 
VTG application uses a server-side geospatial  database and cur-
rent user position to  fill 8 bins of orientation space around the user 
with  prioritized content. The application  uses regular server poll-
ing and the KML NetworkLink Updates scheme to dynamically 
create, delete and modify placemarks around the user. This polling 
scheme is combined with user-initiated keyword filtering through 
the client interface (i.e. “contacts”, “sports”).

In an  effort to  create a single application experience, the VTG 
application hides the standard Argon user interface and manages 
activities such as moving to GeoSpots using Argon Public API 
calls. The application also  does its own display management of 
placemark balloons. To avoid the overlapping of placemark labels, 
client-side CSS and JavaScript dynamically manage the apparent 
position  of labels with leader-lines to their actual position. A pri-
ority assigned to each placemark delivered from the server is used 
in  a heuristic that dynamically moves the four highest ranked  
labels towards the four corners of the screen. 

Figure 6: Examples including a) the re-appropriation of existing web content by Engauge Interactive, b) the Dotman’s Revenge game by CS de-
sign students, c) the Oakland Experience at Oakland Cemetery, d) ARboretum and e) Poring AR by students from Alto University. The Virtual Tour 

Guide application combines server and client side content filtering with dynamic placement of balloon labels to avoid overlap.



6 CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated that web technologies present 
a viable and powerful solution for creating mobile augmented  
reality applications using  existing web standards. We described 
the software architecture of the Argon AR web browser and how 
our implementation leverages the existing WWW ecosystem to 
provide an application environment for AR that  allows for multi-
ple channels to  be viewed simultaneously, bringing us one step 
closer to the vision of immersive AR. We described our extensions 
to  KML in the form of KARML and provided details and exam-
ples of how we have re-appropriated  KML for AR applications. 
We described a number of past and current  projects and high-
lighted the salient  aspects of each project with  respect to both  
Argon and the vision of an AR application environment.

In the coming months, we plan to further develop Argon to add 
new features including full 3D model rendering, support for other 
markup languages (e.g., GML), natural  feature tracking, protocols 
for inter-channel communication, space management  and layout 
behaviors and abstractions, greater support for use of tracking data 
across independent channels without prior coordination, the abil-
ity to capture and upload images and video, manual  control of 
view orientation and pinch-to-zoom capabilities, expanded client 
API, online authoring tools, and support for desktop & other mo-
bile platforms.
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